Frequency Component Restoration for Music Sounds
Using Local Probabilistic Models
with Maximum Entropy Learning

Tomonori Izumitani, Kunio Kashino

NTT Communication Science Laboratories
3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, Japan
izumi@eye.brl.ntt.co.jp, kunio@eye.brl.ntt.co.jp

Abstract random field (MRF) [5] and the maximum entropy model (MEM)
[6]. That is, the model represents local characteristics on a sound
spectrogram by using a probabilistic model that is learned from
Yata using MEM and estimates the optimal states by a generative
“approach [7].

However, a long time is needed for convergence and the es-
timation accuracy of the generative model is sensitive to initial
states. To cope with this, here we introduce a pattern classifica-

S . tion approach that reduces the number of iterations involved in the
Throughout the method, we use a probabilistic model defined for model. When we combine the pattern classification approach and

each local region on a spectrogram. Unlike conventional MRF : - ; .
9 p 9 X . the generative model, an initial state for the generative model is
models, the model parameters are learned using a maximum en-

tropy method. Experiments using artificial noisy sounds show that given by the pattern classification scheme. This improves the ac-
Py method. EXxp 9 . y curacy of the estimation and also reduces the calculation time.
a combination of the above two steps improves the performance

with respect to restoration accuracy and robustness, compared Withmo dilesy(it?é?g;\erzestto?é sp;%?;sle%xer:]sewﬁ:n usscl)rr]r?e F:’Lo?gr?lsllzt;lca
the sole use of pattern classification or a generative model. The P P 9

method achieves an F-measure greater than 0.6 even in periodgpectrogram are missing [8]. _Our m_et_hod Is _b_ased on a 'e.am"?g
where signals are replaced by noises. In addition, the method isscheme and so qus not require exphqt transition models given in
shown to be effective even for audio signals of real instruments. advance. In_addltlon_, our method eSt'mates freq_uency component
structures without prior knowledge of noise locations.
This paper is organized as follows. Section 2 defines the prob-
1. INTRODUCTION lem. Section 3 describes the proposed methods. Then, we present
Frequency components are time continuous peaks on a sound spe@ur experimental results and discussion in section 4. Section 5
trogram such as a fundamental frequency (FO) component and itsconcludes the paper.
overtones. Estimating frequency component structure is an im-
portant task for various music information processing systems, be-2,  Estimating frequency component structure
cause the structure is an important property of the instrumental and ) )
vocal sounds used in many music information processing systemsMany musical sounds have frequency component structures, typi-
including a melody and bass-line extraction system[1] and a mul- cally harmonic structures, that reflect the characteristics of instru-
tiple FO estimation system [2]. ments or vocal mechanisms. These structures are represented as
However, the estimation is not straightforward because the peaks in the frequency direction extending in the time direction on
component structure in music signals can be easily broken by in-& sound spectrogram.
terfering factors generated by, for example, percussive sounds or  In practice, a musical sound may contain various kinds of tran-
noises. The restoration of such broken or missing components issient and irregular components, as found with percussive sounds
therefore essential for many musical information processing tasks.and noises. In addition, the original instrumental or vocal sounds
In this study, we focus on the problem of estimating frequency themselves have irregular components such as those appearing at
component structures from spectrograms of musical audio signalsthe onset of a note. For simplicity, we treat these components as
with noise. In particular, we consider a case where some frequencynoises in this study.
components are missing from musical audio signals due to noise. Noises are represented as irregular patterns on a sound spec-
Various methods that extract frequency components have beerirogram [Fig. 1 (A)]. When peak extraction is applied to such
developed for partial tracking tasks, e.g. methods using the signals, many transient power peaks are extracted simultaneously
Kalman filter [3] and hidden Markov models [4], mainly in the [Fig. 1 (B)].
context of sound analysis/synthesis. Here, we specifically address  The objective of this study is to obtain frequency components
a case where the spectral peaks are intermittently hidden or eraseéh a sound spectrogram of musical audio signals containing noise
by noise or other irregular sounds. [Fig. 1 (C-1), (C-2)]. Solely suppressing noise components is not
The method proposed in this paper is based on the Markov necessarily sufficient because information embedded in frequency

due to noise. Restoration has become important in various mu
sic information processing systems including music information
retrieval. Our method comprises two steps: (1) pattern classifica-
tion for the initial component-state estimation, and (2) state op-
timization by a generative model (Markov random fields; MRF).



spectrogram Extracted peaks Frequency component noise

Figure 1: Estimation of frequency component structure. Spectrogram of musical audio signal (A), power peaks extracted from spectrogram
(B), a frequency component structure extracted from power peaks, where hidden frequency components are interpolated (C-1), and noise
is segregated from frequency component structure (C-2).

components is often hidden or erased by noises. Thus, we address n pixels
the restoration of these hidden or erased components. To deal with
both processes simultaneously, we consider the task as the estima-
tion of the optimal frequency component structure when a spec-
trogram is given. It is formulated as the followiragposteriori
probability maximization model: in

N G : Neighborhood region around i
® = arg max P(O",0V|X). 1) :
er, eN O : Elements of state matrices X and ©@

In this formulation, we have introduced an auxiliary matrix
®Y, which is also a binary state matrix that represents components
originating in noise, to reflect the difference between the genera-
tion mechanism of observatidd with and without noise.

In this paper, we represent the elements of matriée®F,
and ®N asx;, 67, and6Y, respectively. Borrowing terminol-
ogy from image processing, we call each pair comprising a fre-
quency and time component, namely, a poioh the spectrogram,

a “pixel”. The two kinds of states that are representedfyand
®N are called the “frequency component state” and “noise state,
respectively.

In the rest of this paper, we use notatid®@sandé; to simul-
taneously represent two state matrig®$, and®Y, and their ele-
ments9F andoy.

The problem to be solved involves constructing an appropriate o )
probabilistic model represented by eq. (1) and assigning an opti- In the second step, the probability is represented as a probabil-

mal state that satisfies eq. (1) from four possible states, namely,ity funct_ion using MRF [7], to find the optimum set of states by a
0F = 0/1 andd = 0/1. generative approach. Although each of the above two steps can be

used alone to estimaf®, we find a combination of the two very
promising as discussed below.

Figure 2: A neighborhood region around a pixel.at

i itself, ®\; denotes all elements @ except ford;, ando;;
denoted);, (j € G;) except ford;.

In this study, we define the neighborhood as a rectangular re-
gion centered on the focusing pixglfor simplicity (Fig. 2). The
» widths of a neighborhood region in the frequency and time direc-
tion are represented by andn, respectively.

We propose a method comprising two steps for estima@ng
The first step is based on pattern classification; this means that the
probability of6; is represented as a function of only, (j € G;).
We call this step “pixel classification.”

3. Method
3.1. Probabilistic models for microscopic characteristics 3.2. Pixel classification
In order to build a probabilistic model that represemtsosteriori The first step, the pixel classification, assumes that the state for

probability in eq. (1), we assume that the stétecan be deter- every pixel is independent of each other. Therefore, probability of
mined only by its neighborhood states and/or neighborhood obser-eachd; in (2) can be written as
vations.

This assumption is based on the following strong character- P(0i|0j\i, 25,5 € Gi) = P(Oilz;,j € Gi), 3
istics commonly possessed by a spectrogram of a musical audio . . .
signal: if a pixel is involved in a frequency component, neighbor- @nd joint probability P(©[X) is represented as a product of
ing pixels in the frequency direction tend to be excluded from any £ (¢:[2;,J € Gi) for all . _
frequency components while those in the time direction tend to be . The most prob_ab_le state matré can_be_ estimated only by_
included. independently assigning a state that maximizes eq.(3) to each pixel

Therefore, the conditional probability of each pixel’s state can % 1MiS process classifies all the pixels into one for four states.
be represented as follows: Because of the dlff_lgu!tles involved |n_r_nanually constructing

an appropriate probabilistic model, we utilize a supervised learn-
P(6;|®\;, X) = P(0:|0,\s, 25,5 € Gi), (2) ing method to obtairP(0;|x;, 7 € G;) from training data.
Various supervised learning methods can be employed for
whereG; denotes a set of neighboring pixels aroundcluding classification, including methods that have discriminant functions



in non-probabilistic forms. Of these, we adopt the MEM, which
can estimate a probability model. It is used for generative methods
as shown in the following subsection. The MEM is described in
detail in subsection 3.5.

Note that the less calculation is needed in this step than in the

following step, because this step needs only one calculation of a

conditional probability for each pixel.

3.3. Generative method using MRF

The pixel classification approach ignores relationships among
states of multiple pixels. This may generate less probable com-

3. Find local optimum states by applying Gibbs sampling with
C=0.

C is a constant for the temperature scheduling functign) =
C/log(1 +t). C=0 means state®; that increase the probability
are accepted in the iterative process.

3.5. MEM

The MEM can directly estimate the posterior probabilityw| D)
from training data. HerepD denotes a data sample anda class
or category. In this study, corresponds té; and each sampl®

binations of states, especially in circumstances where the spectrafCI"eSPONds to a pixélon a spectrogram, which is characterized

peaks of frequency components disappear behind noises.

The MRF is a framework for representing the microscopic
characteristics of graphs [5] in the same form as the conditional
probability, P(0;10,\:, z;,j € G:), used in this study.

In this formulation, the probability cannot be calculated with-

out determining neighboring states. Generative approaches are

commonly used for estimating the most probable set of states from

such a model. We use Gibbs sampling with simulated annealing as

is often used with MRF. It starts with an initialized set of sta@s
and iteratively generatek according toP(0;|0,\;, 25,7 € Gi),
moving: and its neighborhood region. To find the states that yield
the maximum value of the multi-peaked function, the method in-
troduces the concept of “temperaturg(t) that decreases along
with iteration step. We useT'(t) = C//log(1 + t) in accordance
with the original MRF study [5].

As the iterations proceed, the probability peaks gradually
sha}erze)n if we regard the probability as a function proportional to
py/T®),

Most MRF studies construct the probabilistic model by means
of “potential functions,” which adopt a small value for a state
configuration that occurs easily. The conditional probability
P(0:|0;\:,x5,7 € G;) is represented as an exponential of the po-
tential function.

Usually, potential functions are manually defined based on
simple rules that refleca priori knowledge about the objects.
However, it is difficult to design an appropriate function when we
use various features that pixels withif) have.

To overcome this problem, we use a supervised learning
method, MEM, that directly estimateB(0;|0,\;,x;,7 € Gi)
from training data [7]. Using the method, we can easily extend the
size of neighborhood regiofi;, represented by andn, without
manually redesigning the potential function.

Hereafter, we refer to this generative process simply as
“MRF.”

3.4. Combination of pixel classification and MRF

A disadvantage of the generative process in MRF is that it often
needs a long time for convergence. Moreover, an estimation is in-
fluenced by the initial state and it can be trapped in locally optimal
states.

This is largely due to incorrectly estimated neighboring pixels.
Thus, we want to avoid such a problem by finding an appropriate
initial state matrix®' that is close to the optimal one.

For this purpose, we propose a combination method that con-
sists of the following steps:

1. Estimate a state matri®' by P(6;|x;,j € G;) trained by
the MEM (the pixel classification).

2. Set®! as an initial state for Gibbs sampling in MRF.

by Oj\i and:rj, @ € G)).

To defineP(w| D), multiple features are extracted for a given
D using feature functiong, (D, w), (I = 1,2, ..., F'). Each func-
tion is defined by a combination of dafdand a class), and it has
binary values (0/1).
In MEM, P(w|D) is represented as

exp <Z A fi(D, w)) ,
1

where Z(D) is a normalization term and = (A4, ...
model parameters.

The model parameterd are estimated so as to maximize
the entropy of joint probability?(w, D) under the condition that
the expectations of;(D,w) from P(w|D) are equal toE(f;),
which is obtained simply by counting the number of cases where
f1(D,w) = 1in the training data, for all

Generalized iterative scaling (GIS) or the improved iterative
scaling (11IS) method, which are kinds of hill-climbing methods,
are commonly used to estimateg[6].

Pr(w|D) =

1
Z(D) (4)

Ar) are

3.6. Defining feature function for MEM

Observationse;, (j € G;) are used to define feature functions
fi for pixel classification. For MRF, neighboring states around
namely,d}, , anddy\ ; are used in addition to;.

In preparation for defining;, we introduce an auxiliary fea-
ture functiong,s (D), which also takes a binary value and does not
depend onw. In the following two subsections, we propose auxil-
iary feature functions for the pixel classifier and MRF.

3.6.1. Auxiliary feature function for pixel classification

For pixel classification, auxiliary feature functiopg are defined
only by z;, ( € G;). Figure 3 (A) shows the procedure for ob-
tainingg;.

First, we use spectral powets, (; € G;), which have real
values. For each, z; is quantized into on/off states @ bins.
Namely, one oB bins,:cjl-, s xf, is set at 1 according to the value
of z; and the rest are set at 0. For example, wBerB and 0.3%

z; <0.67, auxiliary feature function&}, z7,2%) corresponding

to the three bins becon®, 1, 0), where every:; is normalized to

0 - 1. Note that a feature function can only have a binary value in
the MEM.

Second, we introduce binary vals®;, which has a value of
1 if a pixel 5 forms a power peak in the frequency direction on
the spectrogram. This is introduced because spectral power peaks
provide rich information about frequency components, especially
in a clear sound without noise.
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Figure 3: Making auxiliary feature functiong(, g=, ...) from the
neighborhood region around a pixel(A) Auxiliary feature func-
tions for the pixel classification are extracted only by observation
matrix X. (B) For MRF, state matrice®" and®" are used in
addition toX.

We additionally introduce the negativex”;, which corre-
sponds to eacl”;. This value is used to keep the sum of all
f1(D,w) in the training samples constant and thereby simplifies
the MEM learning using GIS.

This procedure yieldsB+2)mn auxiliary feature functions.

3.6.2. Auxiliary feature function for MRF

For MRF, auxiliary feature functiong: include information about
neighboring states excluding the state of pixeh addition to ob-
servations.

Figure 3 (B) shows auxiliary feature functions for MRF. A fre-
quency component state and noise stafg., ande;\l\i, (4 € Gy)
are used fog;: in addition to functions defined for pixel classifi-
cation. The negative valuesﬂf\i and ﬁe;“\i, which correspond
to Hf\i andey\i, are also introduced as auxiliary feature functions
given for pixel classification. Consequentlyy#-1)+(2+B)mn

auxiliary feature functions are obtained.

3.6.3. Generate feature function

By using the above definitions, a feature functign=f_r ~;

functionsg;, as follows:

(D) if oF = wF andol¥ = N
(D, 0¥, 6%y = 9 ; L ’
Forony (D, 0:,05) {0 otherwise.

®)

4. Results and Discussion

We evaluated the proposed method described in the previous sec-
tion in terms of frequency component restoration accuracy. We
first checked each step of the method under controlled conditions
using artificially synthesized audio signals. Then, we applied the
method to musical phrases generated from real instruments.

4.1. Preparing training and test data from artificial sounds

Artificial sounds were synthesized for use as the ground truth for
the frequency component and noise state matrix. The ground truth
is needed for the MEM learning procedure and evaluation.

First, we prepared different tones for training and testing.
Sounds close to a sawtooth wave with ten harmonics were used
for training and those close to square wave with five harmonics
were used for testing. We then generated two different 3.5-sec
musical phrases using these sounds by connecting seven 500-ms
single notes for training and test data.

Next, for each musical sound, two parts of the original 3.5-sec
musical sound were replaced by 200- and 300-ms-long Gaussian
noises. The noise locations were different. With this procedure,
traces of frequency components entirely disappeared within the
noise regions.

All audio signals were sampled &ts = 11,025 Hz. To create
observation matriceX, sound spectrograms were generated using
short-time Fourier transforms (STFT). The window size was set at
1024. We tried four kinds of shift for the windoul, = 128, 256,

512, and 1024.

The spectral power values in decibels were normalized into a
range of [0, 1] from the power of 100 neighboring components in
the frequency direction. These were used in composing the obser-
vation matrixX.

The ground truth of the frequency components was created
based on fundamental frequencies of the generated phrase and the
harmonics that each tone should have. The ground truth of the
noise components was created from spectral peaks within noise
periods and peaks not included in frequency components.

Throughout the experiments, we usBd= 3 for quantization
of spectral powers. It was chosen by preliminary experiments us-
ing the same data set as [7]. For the MEM learning, 15,000 pixels
in a spectrogram were randomly selected for eAch

4.2. Evaluation of accuracy

We examined the performance of the method for the following four
experiment patterns:

1. Pixel classification (PC)

2. MRF withC = 1 for slow convergence (MRF1) [7]

3. MRF withC' = 0 for fast convergence (MRF2)[7]

4. Combination of pixel classification and MRF (PC+MRF),

can be defined for all four combinations of frequency component where each term in parentheses is an abbreviation of the corre-

and noise states;” = 0/1 andw™ = 0/1, using auxiliary feature

sponding experiment. For MRF, we tried two kinds of convergence



The right column of Table 2 shows the performance of the
experiment PC+MRF using the same parameters with the corre-
sponding method. Also in these cases, the combination method
outperforms MRF and it yields almost the same performance as

Table 1: The number of pixels for various STFT window shifts
(L). Two columns labeled with “freq. ¢.” show the number of
pixels involved in the frequency components.

Window shift | Whole period (3.5s)| Noise period (0.5s) pixel classification. This indicates that the combinatorial method
(L) total  freq.c.| total  fregq.c. is robust with respect to parameter variation.
128 150,822 1,470 23,085 225 Figure 4 shows the performance obtained with various pa-
256 75,411 735| 12,312 120 rameter settings arounti=512, m=5, andn=11 which yields the
512 37,962 370| 6,156 60 best performance. Figure 4 (A) shows the relationship between
1024 18,981 185] 3,591 35 STFT window shift {) and F-measures. Whdn=128 or 256, F-

measure for every experimental pattern was suppressed at a low

. A : .__level. In each case, the pixel size in the time direction is very
Table 2: The best estimation of frequency components in the n0|seshort, 12 ms and 23 ms, respectively. This indicates that the local

region for each experimental pattern.. Values in parentheses denot('E)robability models are unsuitable when a neighborhood region is
the F-measure for whole 3.5-sec periods.

small compared with the length of audio events such as a noise or

L m n  F-measure F-measure(PC+MRF) musmal_notes. . . . .
PC 1024 3 7 0.66 (0.90) 0.64 (0.88) In Figure 4 (B) and (C), various sizes of neighborhood region
MRF1(C=1) | 1024 3 11 0.53(0.84) 0.65 (0.88) were employed. The tendency of the experiment PC/PC+MRF was
MRF2(C=0) | 1024 3 11 0.51(0.77) 0.65 (0.88) quite different from that of the experiment MRF1/MRF2. In par-
PC+MRF 512 5 11 0.71(0.88) - ticular, PC and PC+MRF were found to be very robust with respect

to variation ofn.
We observed the following characteristics throughout all the

rates that were controlled by a constahof temperature schedul- ~ €Xxperiments.

ing functionT'(t). Initial states®' for both experiments MRF1 e The combination method (PC+MRF) worked much better
and MRF2 were randomly generated. than the MRF based method as longlasndn were not
We tried various sizes of neighborhood region for all the ex- too small.

periment patterns, namely=3, 5, 7, 9, 11 anet=3, 5, 7, 9, 11.

For generative processes in the experiments MRF1, MRF2,
and PC+MRF, the convergence was judged by the number of gen-
erated pixel states that were different from the previous iteration
step. We stopped the iteration if the number became less than 0.01 e Estimation only by MRF (MRF1/2) was unstable for varia-
% of the total pixels. tions in the embedded parameters.

Table 1 shows the total number of evaluated pixels and the e iy difference between the experiment MRF2 and
number of pixels that composed the frequency components within p,.\RF s the initial state®' in the generative process. This in-
the whole period of the test phrase and the periods where Gausyjicates that the appropriate setting of the initial states for the MRF

sian noises were added. Noise periods are defined if at least halfyenerative process is practically essential and pixel classification
the samples within an STFT window originate in added Gaussian .5, estimate the initial state.

noise. ) Appropriate initial state setting also reduces the number of it-
_The number of pixels that compose frequency components, gration steps needed for convergence. When the parameters were

which are treated as positive patterns, constitute only about 1%:nasen ag.=512, m=5, n=11, the experiment MRF1 took 279

of the total pixels. In such cases, performance is often measuredsteps, MRF2 18, and PC+MRF only 5 steps, while the computa-

by EFECiSiOH £) and recall (2), especially in information retrieval  tjona cost for each step was identical for all three methods.

tasks.

We adopt F-measuré) as an evaluation measure. Itis de- 43 Application to real instrumental sounds
fined as the harmonic mean of precision and recall, and it takes a

e The MRF generative process in the combination method
improved the estimation only by the pixel classification in
almost all cases.

value in the [0, 1] range. These measures are defined as We also applied the proposed method to real instrumental sounds.
We chose acoustic sounds of piano, violin, flute, trumpet,
TP TP 2PR marimba, and alto (vocal) played with the normal playing style
pP= TP+ FP’ R= TP+ FN’ F= P+ R from the RWC Musical Instrument Sound Database (RWC-MDB-

I-2001 No. 01-50) [9]. We then generated 7.5-sec musical phrases
whereT P, F P andF'N denote the number of true positive, false with five short Gaussian noises, 1.1-sec in total, for each instru-
positive and false negative samples, respectively. mental sound.

Table 2 shows the frequency component estimation perfor- We defined the ground truth data from power peaks close to
mance within the 0.5-sec noise region, with parameter valuesthe fundamental frequency and its harmonics that were expected
yielding the best F-measure for each experimental pattern. from the notes of the musical phrase.

The best performance of all is obtained when the experiment The same experimental conditions and the same training data
PC+MRF is used with.=512,m=5, andn=11. It achieves an F-  as the previous subsection were used for the frequency component
measure of 0.71, where precision is 0.90 and recall is 0.58. Thisestimations.
means that more than half the frequency components, which had  Table 3 shows the performance of each method when applied
disappeared due to noise, were restored and 90% of the estimatetb real instrumental sounds using two parameter setsL4)024,
frequency components were actually correct. m=5, n=7 and (B)L=512,m=5, n=11. In the table, F-measure
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Figure 4. Comparison of F-measure of four experimental patterns. (A) Changing shift width of GTHIerem=5 andn=11. (B)
Effect of neighborhood region size in the frequency direction wHerg12,n=11. The notation is the same as (A) and (C). (C) Effect of
neighborhood region size in the time direction whéreb12,m=5.

exploits probabilistic models that represent local characteristics on
a sound spectrogram. Specifically, the method features the com-
(A) L=1024.m=5,n=7 bined use of pattern classifice}tior} and a generat?ve model. Test
instrument] — PC VIRFT VIRE? PCTMIRE results showed that _the combination method achleygs l_)etter per-
piano 0.35(0.73) 034(0.71) 0.34(0.70) 0.38(0.73) formanc_e than the single uses of_the pattern clf_:lssmcatlon or the
violin 0.21(0.55) 0.19(0.53) 0.19(0.52) 0.22 (0.54) generative model from the viewpoints of restoration accuracy and
flute 0.26 (0.50) 0.28 (0.49) 0.23(0.45) 0.26 (0.49) robustness. Future work will include the application of the pro-

trumpet | 0.28(0.52) 0.29(0.50) 0.28(0.49) 0.30(0.51) posed method to real tasks such as music information retrieval and
marimba | 0.10(0.26) 0.08(022) 0.11(0.25) 0.08(0.24)  sjgnal restoration.
alto 0.15(0.33) 0.13(0.30) 0.08(0.23) 0.13(0.31)

Table 3: F-measure values for the restoration of the frequency
components in noise region using real instrumental sounds.

(B) L=512,m=5, n=11 6. References

instrument PC MRF1 MRF2 PC+MRF " . . . .
piano 024(0.74) 0.19(0.60) 0.10(050) 0.32 (0.74) [1] M. Gotg, A real-.tlme' musm-scene.-descrlptlon system:
violin 0.21(0.60) 0.10(0.44) 0.01(0.25) 0.25 (0.59) predominant-FO estimation for detecting melody and bass
flute 0.18 (0.54) 0.11(0.37) 0.07(0.26) 0.23(0.54) lines in real-world audio signals,"Speech Communicatipn
trumpet | 0.26 (0.58) 0.13(0.39) 0.01(0.23) 0.32(0.56) vol. 43, pp. 311-329, 2004.

marimba | 0.13(0.29) 0.00(0.11) 0.00(0.11) 0.16 (0.30)

alto 0.09(0.37) 006(0.26) 0.05(013) 012 (0.36) [2] A. P. Klapuri, “Multiple fundamental frequency estimation

based on harmonicity and spectral smoothnel=E’E Trans.
Speech and Audio Processjngpl. 11, no. 6, pp. 804-816,

2003.
values for noise regions (1.1 sec) are shown and those for whole[3] A. Sterian and G. H. Wakefield, “A model-based approach to
7.5 sec sounds are shown in parentheses. partial tracking for musical transcription,” iroc. of SPIE98

The total performance degraded compared with experiments 1998, pp. 171-182.
using artificial sounds. This degradation occurred especially in [4] Ph. Depalle, G. Gaia, and X. Rodet, “Tracking of partials
terms of recall values, which decreased by around 0.1 - 0.2, under  for additive sound synthesis using hidden Markov models,” in
most conditions. This is because the method does not capture the  proc. of ICASSP931993, pp. 1225—1228.
complicated frequency component structures possessed by a re"’ft\i] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distri-

sound but not by the'trz?\ining data. ) ) butions, and the Bayesian restoration of imagdsEE Trans.
In Table 3 (A), similar results were obtained in each step of Pattern Analysis and Machine Intelligenogol. PAMI-6, no.
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