
Pitch Estimation Using Mutual Information

Majid Mirbagheri1, Yanbo Xu1, Shihab Shamma1,2

1Institute for System Research, University of Maryland College Park, MD, USA
2Department of Electrical and Computer Engineering, University of Maryland College Park, MD, USA

mbagheri@umd.edu, yanbohsu@umd.edu, sas@umd.edu

Abstract
A spectrotemporal method based on Mutual Information
(MI) is proposed for pitch estimation of voiced speech
signals. We use MI as the similarity measure between
voiced speech segments and their delayed version. In-
stead of measuring linear dependencies, MI measures sta-
tistical dependency, which suits the dynamic character-
istic of speech signals. Besides, higher-order statistics
are directly encoded in the MI while they are not usually
taken into account in traditional correlation-based mea-
sures. Through experiments on both synthetic signals and
a real speech dataset, this new measure is proven to be ef-
fective for pitch estimation.
Index Terms: pitch estimation, mutual information,
higher-order statistics, periodicity, spectrotemporal

1. Introduction
Pitch is a significant attribute of voiced speech signals,
and its accurate estimation plays a role of great impor-
tance for various applications like speech coding, en-
hancement, recognition, and so forth. The passed decades
have witnessed the steady progress in pitch estimation al-
gorithms. Basically, these algorithms can be classified
into 3 categories: temporal, spectral, and spectrotempo-
ral approaches [1].
As a classic model for temporal and spectrotemporal ap-
proaches, the autocorrelation function [2] measures the
correlation of the windowed N-sample speech segment
starting at t and its lagged version by τ , based on the as-
sumption that voiced speech signal is quasi-periodic.

R(τ, t) =
1

N

t+N−1∑
n=t

xnxn+τ (1)

Several methods [3] [4] have been proposed to modify
the correlation in (1) in order to improve the accuracy.
However, these methods only make use of information
up to the second-order statistics of the analyzed signal.
To further exploit the higher-order statistics, Wu et al. [5]
applied correntropy to analyze the temporal structure of
speech signal, and explored the superiority of correntropy
over traditional autocorrelation based methods. Given
a one-dimensional signal with N available sample pairs

(xn, xn+τ ) the correntropy-based autocorrelation func-
tion is estimated by:

RV (τ) =
1

N

N∑
n=1

G(xn − xn+τ ) (2)

where G(x) is Gaussian kernel exp(− x2

2σ2 ). The Tay-
lor Series expansion of the correntropy function indi-
cates that only the even-order moments of the error
xn − xn+τ are included meaning that as a function of
the squared difference error it reflects the the similarity
of samples spaced at different lags. Both correntropy and
correlation-based measures capture the linear dependen-
cies between these samples. The issue about linear de-
pendency is that it cannot be relied on in some realistic
scenarios where the periodicity is implicitly manifested
in a transformed version of its signal such as envelope as
opposed to explicitly existing in the signal itself. To ad-
dress this issue, we propose using statistical dependence
of samples and their lagged versions by measuring mu-
tual information between them. The paper is organized
as follows. In section 2, we discuss the use of MI to esti-
mate the pitch of speech signals, and in section 3 evaluate
the performance of the proposed method. Finally we dis-
cuss the implications of this work in section 4.

2. Method
We first introduce Mutual Information and its estimation.
We also discuss how we benefit from MI to capture the
periodicity of one-dimensional signals, and describe the
the pitch detection algorithm for speech signals based on
MI.

2.1. Mutual Information

Mutual Information (MI) is a measure of statistical de-
pendence between random variables. MI has previously
been used to measure similarity in the context of cluster-
ing and feature selection in [6, 7]. For two continuous
random variables X and Y with joint and marginal densi-
ties fX,Y , fX and fY , Shannon’s MI is defined as:

I(X,Y ) =

∫∫
fX,Y (x, y) ln

fX,Y (x, y)

fX(x)fY (y)
dxdy (3)



It can be shown that I(X,Y ) ≥ 0 and I(X,Y ) = 0 if
and only if X and Y are independent. MI is unique in its
close ties to Shannon entropy and the theoretical advan-
tages derived from this. With the entropy as a measure of
the uncertainty associated with random variable X and
defined as:

H(X) = −
∫
fX(x) ln fX(x) dx (4)

MI measures how much knowing one of the variables re-
duces the uncertainty about the other or mathematically:

I(X,Y ) = H(X)−H(X|Y ) (5)

In applications, the joint densities are usually unknown
and one has the data available in form ofN sample points
(xi, yi), i = 1, . . . , N which are assumed to be i.i.d. re-
alizations of the underlying joint density fX,Y . Among
numerous existing algorithms to estimate I(X,Y ), we
chose a k-nearest neighbor (KNN) estimator introduced
in [8] previously shown to be fairly accurate and data-
efficient [9].
This method gives a nonparametric estimation of mutual
information between two randomX and Y based on i.i.d.
samples z1, . . . , zN , zi = (xi, yi). Using max norm for
the space Z defined as:

ρ(zi, zj) = max{Dx(xi, xj), Dy(yi, yj)} (6)

in which Dx and Dy can be any two arbitrary distance
functions defined on X and Y subspaces, the KNN es-
timator of mutual information would be derived as fol-
lowed:

Ik,N (X,Y ) = ψ(k)− 1

k
− 1

N

N∑
i=1

(ψ(lxi,k) + ψ(lyi,k))

+ ψ(N) (7)

with ψ being the famous digamma function defined as:

ψ(z) =
Γ′(z)

Γ(z)
=

d

dz
ln Γ(z) =

∫ ∞

0

(
e−t

t
− e−zt

1− e−t
)dt

(8)

and ρzi,k being the distance between zi and its k-th near-
est neighbor among N − 1 remaining samples according
to (6), and ρxi,k and ρyi,k the distances between the same
points projected into the X and Y subspaces (ρzi,k =

max{ρxi,k, ρ
y
i,k}), lxi,k and lyi,k are defined as the num-

ber of samples with Dx(xi, xj) ≤ ρxi,k and Dy(yi, yj) ≤
ρyi,k. For our application, Dx and Dy were chosen to be
the max norm and

√
k/N = 0.4 as advised in the method

implementation.

2.2. Periodicity Estimation

In order to detect structural periodicities in one-
dimensional signals, we use estimates of MI between
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Figure 1: (a) R(τ), (b) RV (τ), (c) RI(τ) calculated for
a 100Hz sinusoid of duration 20ms, (d) RI(τ) calculated
for the half-rectified, low-passed version of the same sig-
nal

their samples and delayed version ones. For that we
define the autodependence function for one-dimensional
signal x, RI(τ), by:

RI(τ) = Ik,N (X0, Xτ ) (9)

with Xτ denoting the random variable realized by N
samples of signal x delayed by the lag τ . Now we look at
how this function behaves for different synthetic signals
and compares it to autocorrelation functions based on
correlation and correntropy, R(τ) and RV (τ). Through-
out the section, we use the notation R(τ) without the in-
dex t for that in all cases only one single window was
applied to the sample segments.
The first signal we illustrate is a simple 100Hz sinusoid of
duration 20ms sampled at 16kHz. The three top plots in
figure 1 show the values ofR(τ),RV (τ) andRI(τ) com-
puted for this signal. Comparing the peaks at τ = 10ms,
it can be seen that RI(τ) gives rise to a much sharper
peak. The sharpness of the peak is advantageous in ap-
plications dealing with multiple pitches. The undesired
peak in RI(τ) at τ = 5ms, half of the actual period T is
a direct result of the relation x(t) = −x(t + T ) for the

pure sinusoid signals. This unwanted peak at τ =
T

2
can

be easily removed by half-rectifying and low-pass filter-
ing of the signals before computing the RI function as
shown in the bottom plot in the same figure.
In the next example, we explore the case when the 100Hz
sinusoid signal was modulated at 361Hz. This specific
frequency was deliberately chosen a coprime to the fre-
quency of the original sinusoid so that the two tones did
not beat together. Figure 2 shows the R(τ), RI(τ) and
RV (τ) values computed for delays in the range 0-20 ms.
As shown in the plots, the desirable peak at the delay
τ = 10ms corresponding to the envelope periodicity is
only observable in RI . This can be related to the fact
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Figure 2: (a) R(τ), (b) RV (τ), (c) RI(τ) calculated for
a 100Hz sinusoid modulated at 361Hz

that the coprime modulator has disrupted the linear de-
pendence between samples spaced at the period of the
envelope while they still maintain a relatively high statis-
tical dependence as reflected in RI . This phenomenon is
of particular importance for spectrotemporal algorithms
when dealing with real-world dynamical signals such as
speech for which: 1) periodic segments are amplitude-
modulated by other slow-varying signals 2) periodicities
in subband channels are manifested in the envelope of the
filters outputs.

2.3. MI-based Pitch Estimation

In this application, we include a feature analysis stage
using a gammatone filter bank which mimics the func-
tion of human cochlea, and is widely used as a periph-
eral processing module in computational auditory scene
analysis (CASA) models. The input signal is separated
into frequency bands while the temporal structure of the
original signal is preserved. The filterbank consists of
constant-Q bandpass filters [1], with high resolution in
the the lower frequency channels so as to separate the first
several harmonics which serve as important cues for pitch
estimation. Thus this method is cast into a spectrotempo-
ral framework. Once analyzed, the output of each filter
is halfway rectified, and then low-passed mimicking the
envelope tracking function of human inner hair cells. As-
suming that channels dominated by harmonics resemble
the sinusoidal signal in figure 1, the halfwave rectification
then helps in suppressing unwanted peaks in our pitch es-
timation method.
After the peripheral processing, segments of subband sig-
nals are extracted and the autodependence functions are
computed for each and denoted by Ri

I(τ), for 1 ≤ i ≤
64. Instead of pooling these functions across subbands,
we use weighted sums with different weighting rules
specifically designed for different time lags. Denoting
the sampling frequency of the original speech waveform
as fs, given a time lag τ , for the hypothesized funda-
mental frequency, fτ = fs/τ different harmonics of the

fundamental frequency at multiples of fτ are considered.
As the bandwidth of channels might be relatively broad,
each channel can span several neighbor harmonics. For
the sake of simplicity, assuming that the output of each
channel is dominated by the nearest harmonic to its cen-
ter frequency in log-scale, the weight of the i-th channel,
wτ

i is determined in the following way:

wτ
i = cos(

π(fci − fni)

fτ
) (10)

with fci denoting the center frequency of the i-th channel
and fni the nearest harmonic to fci. The logic behind
this is that the closer a harmonic to the center frequency
of the channel, more likely this channel contains relevant
information about the pitch candidate. Finally we have
the final formula for the aggregated autodependence as a
function of the time lag τ as:

RI(τ) =
64∑
i=1

Ri
I(τ)w

τ
i (11)

3. Experimental Results
To demonstrate the accuracy of the proposed MI-based
method in resolving multiple pitches we applied it on a
mixture of two synthetic vowels /a/ and /i/ with close
pitch values of 100Hz and 105Hz. Depicted in figure 3
it can be seen that the sharper peaks at the corresponding
delays in autodependence function (specially compared
to the correlation-based one) makes it easier to reliably
detect both pitch values. For better clarity, the bottom two
plots are normalized so that the minimum and the max-
imum become 0 and 1. We also assessed the effective-
ness of MI as the similarity measure for pitch estimation
on Bagshaw’s FDA dataset [10]. This dataset is com-
posed of speech signals from one male and one female
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Figure 3: (a) R(τ), (b) RV (τ), (c) RI(τ) calculated for
a mixture of two synthetic vowels /a/ and /i/ with pitch
values of 100Hz and 105Hz



SNR(dB) clean 10 0
White Noise Added

MI 5.72 6.18 12.18
CORRE 11.93 13.54 22.15
AUTO 10.72 10.96 13.48

Babble Noise Added
MI 13.62 37.66

CORRE 22.89 42.55
AUTO 14.07 30.48

Table 1: Comparison of GPE for MI, CORRE, and AUTO
pitch estimation methods

speaker, and the spontaneous laryngograph signals. The
same 50 sentences are read by each speaker and recorded.
Although files containing reference of pitch contours are
also provided, we regenerate ground truth by running an
autocorrelation method on the laryngograph signal with
manual correction to align it to the right time resolution.
White and babble noise from NOISEX92 dataset were
added at two different SNR levels 10, and 0dB to simu-
late noisy conditions.

We compared our method (MI) with correntropy
(CORRE) [5] and classical autocorrelation (AUTO) as
they share similar underlying mechanisms for pitch es-
timation. Pitch values were determined from speech seg-
ments of length 20ms. The pitch range considered was
from 50Hz to 400Hz, corresponding to a lag range from
40 to 320 samples. Thus in total, 40ms (640 samples) was
used for the analysis at each time step. The same channel
weighting was applied for all three measures. As pointed
out in [11], the accuracy of determination of boundaries
of voiced speech sessions can affect the performance of
pitch determination algorithms. Since the focus of this
paper is on the similarity measure of voiced speech seg-
ment, only the segments within voiced sessions were ana-
lyzed according to the obtained ground truth of pitch con-
tours. It should be also noted that different methods might
apply different post-processing procedures to refine the
results, which usually require parameter adjustment by
trial and error. Hence, to compare these 3 measures, no
post-processing was conducted, and for each time step
only the maximum peak within similarity values com-
puted at different lags was chosen. We adopt Gross Pitch
Error (GPE) [12] to determine the correctness. If the de-
termined pitch is more than 20% off the reference pitch
value, we consider an error. The error rates for the 3
methods under different conditions are summarized in ta-
ble 1. The error rates are higher than previously reported
ones because of the lack of the post-processing stage.
From table 1, MI-based method has the lowest error rate
for clean and white noisy signals. The performance for
all these methods degrade as the SNR drops, especially
for babble noise. For this noise type, our method outper-

forms the other two at SNR of 10dB, but becomes slightly
weaker than AUTO when SNR is lower. This can be ex-
plained in the shadow of the fact that in presence of a
dominant highly non-stationary noise higher order statis-
tics of the signals becomes less representative of their na-
ture and hence less reliable.

4. Conclusion
In this paper, we proposed to use Mutual Information as
a new similarity measure of voiced speech segments with
their delayed versions for pitch estimation. This measure
is distinguished by its use of statistical dependency mea-
sures instead of the limited linear dependency. Through
experiments with both synthetic data and a real speech
dataset, this new measure was shown to outperform the
traditional measures that rely on information from sec-
ond order statistics. We believe with post-processing re-
finement, the performance of our method could be further
improved.
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